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1. Introduction 
Parallel computer architectures of many varieties have been developed over 

the past several years, and new types continue to emerge. It is important to 
investigate the extent to which such architectures allow specific computational 
tasks of recognized significance to be carried out more quickly than is possible on 
conventional sequential machines. 

A recent study at RIACS (A851 investigated this issue with respect to six 
types of problems, all known for their massive computational requirements when 
treating "large" problems. The six areas were computational fluid dynamics, 
computational chemistry, galactic simulation, linear system solution, natural 
language processing, and queueing network analysis. The specific parallel archi- 
tecture studied was data flow architecture [D84]. 

In this report, we focus on the area of queueing network analysis. We give 
a more detailed discussion of the investigation from which summary results were 
included in the report that described the entire data flow architecture evaluation 
study [Ass]. 

2. Problem Overview 
Queueing Network Models are tools for deriving performance estimates for 

computer systems and communications networks [DB78]. From inputs that 
describe workfoad intensities (the volumes of transactions or jobs or messages) 
and service demands (the average amounts of service at each system device, or 
center, required on average by a work unit), it is possible to calculate such per- 
formance measures as throughputs, average response times, utilizations, and 
average queue lengths. In single- elms queueing network models, the assumption 
is made that all items of work are statistically identical. In multiploclaes 
models, on the other hand, the workload intensity and the service demands of 
each distinguishable workload component are described individually. 

In a single-class queueing network model with N customers and K devices, 
there are 

N + K - 1  - ( N +K - I ) !  
L=( N I - N ! ( K  - l ) !  
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distinct system states. (That is, there are L distinguishable permutations of N 
indistinguishable customers and (K - 1) device queue separators.) Since the place- 
ment of customers in various classes is independent, the corresponding expression 
for a multiple-class network is 

c N , + K - l  '=n( i =1 N i  ) 
where C is the number of classes, and Ni is the population of class i . 

By the technique of global balance [LZGS84], the equilibrium state probabili- 
ties for such networks can be calculated by solving L simultaneous linear equa- 
tions in which the unknowns are the equilibrium probabilities of the system 
states. Clearly, however, this is computationally feasible only for networks with 
very few classes, few devices, and few customers per class. With two classes, five 
devices, and ten customers per class, the number of simultaneous linear equa- 
tions to be solved already exceeds one million. 

Fortunately, an important subset of queueing network models (those that 
satisfy certain restrictions leading to the property of separability [LZGS84]) can 
be solved efficiently. Techniques are known for obtaining performance estimates 
directly, rather than by summing state probabilities over subsets of system 
states. For example, using mean value analysis (MVA) [RL80], the throughput 
and average response time of a single-class queueing network model with N cus- 
tomers and service demands, D1, D , ,  ... , DK at the K centers can be expressed 
recursively by: 

Throughput : X ( N ) = N / R  ( N )  
K 

Mean Response Time : R (N ) = R, (N ) 
i =1 

R, (N -1) 

R (N -1) 
where R i ( N ) = D ,  

with Ri (1) = Di 

By a different technique, called convolution or normalization constant 
analysi8 [B73, RK751, the same performance measures can be expressed as 

Throughput : X ( N ) = G  (N - l ) / G  ( N )  
N G N  Mean Response Time : R ( N ) = L  G (N -1) 

(3) 

(3) 

where G ( N ) = g ( N , K )  

and g (n ,k)=g (n ,k -1)+D, x g (n -1,k) 

with g ( O , k ) = l  k =0,1,2, . . . , K  

and g (n ,O)=O n =1,2, . . . ,N 

This recursive expression for G ( N )  is a computationally efficient means of calcu- 
lating the normalization constant that assures that the state probabilities sum 
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Later in the paper, we will refer to both normalization constant analysis based 
on recursion (NCR),  which uses equations (3) to compute G (N), and normaliza- 
tion constant analysis based on direct computation (NCD) of C (N) by equation 

Calculation of throughput and mean response time by either MVA or NCR 
requires no more than about 4KC n(N, + I )  arithmetic operations. For the exam- 

ple network mentioned earlier with two classes, five centers and ten customers in 
each class, the solution requires about 5000 operations with either efficient tech- 
nique as opposed to the millions or billions of operations that would be required 
by the global balance solution which involves the solution of a million simultane- 
ous linear equations in a million unknowns (even taking full advantage of the 
sparseness of the coefficient matrix). The NCD approach would require around 
20 million operations since the summation is over more than a million terms, 
and each term consists of 20 factors. 

For very large queueing network models, exact solution even by mean value 
analysis or normalization constant analysis can become computationally very 
expensive. For example, for five classes, ten centers, and one hundred customers 
per class, the efficient exact solution techniques would require over one trillion 
arithmetic operations. Consequently, it is of interest to investigate the extent to 
which parallel computer architectures can increase the size of queueing network 
models for which it is feasible to obtain the exact solutions. 

(4) - 

i 

3. Abstract Algorithms 
We will consider three methods of obtaining exact queueing network model 

solutions using a dataflow architecture. The first method (MVA) involves using 
the mean value analysis recursion (equations (1)), while the other two involve 
calculating the normalization constant either recursively (NCR using equations 
(3)) or directly (NCD using equations (4)), and then using equations (2) to 
obtain the performance measures. Note that the NCD method is the "most 
parallel" in the sense that all the terms of the summation are computed in paral- 
lel, and then the s u m  of all the terms is calculated. A common approach when 
developing algorithms for implementation on parallel architectures is to start 
with the statement of the problem that imposes the fewest restrictions on paral- 
lelism. We shall see that in the case of the problem under investigation here, 
such an approach does not lead to the best solution. Figures 1, 2, and 3 show 
the dataflow diagrams for the three algorithms respectively. Part A of each fig- 
ure treats the single class case, and part B the multiple class case. In the 
diagrams, we assume that the fan-in to and fansut  from each operation is res- 
tricted to two. 
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MVA 

4. Algorithm Performance 
In order to obtain some performance estimates, we will assume here that the 

VAL compiler succeeds in mapping the data flow diagram onto the data flow 
machine processing elements in an optimal way, so that the arithmetic units are 
kept busy all the time. This assumption is quite optimistic and will bias our 
comparisons in favor of the data flow architecture. Tables 1 and 2 summarize 
the results of analyzing the various approaches for single class and multiple class 
models respectively. In each table, we indicate the space and sequential opera- 
tions required for algorithm execution on conventional architectures. For data 
flow architectures, we give estimates of the number of operator nodes in the full 
data flow diagram, and the number of time steps required for data flow execu- 
tion under three successively more realistic sets of assumptions: 

(1) both the number of processing elements (PE's) and the fan-in and fan-out 
at each operator are unlimited (the "ideal" case), 

(2) an unlimited number of PE's, but fan-in and fan-out is restricted to two, 
(3) only 256 PE's and fan-in and fan-out is restricted to two. 
(In the last case, the limitation of having only 256 processors matters only when 
the parameters of the problem are sufficiently large.) 

NCR NCD 

operat ions 

space 

operators 

ideal 

2-way fan 

256 PE's 

MVA NCR NCD 

K L  +logzN 

min( N , K  ) 

DATA FLOW 

5N 

N [ 3 +log,K ] 

2 [ N  + K ] + 2  2 

2 [ N  + K ] + 2  N +logz( K L  ) 

3 NK 

3NK 
256 
- 

2NK 

2NK K I N + L ]  - 
256 256 

K [ N + L ]  

if K >256 if min(N ,K)>256 if L >256 

Table 1. Approximate Computational Costs in the Single Class Case. 
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Note that the details of these expressions for computational cost may vary 
somewhat depending on how one envisions the algorithm being implemented. 
For our purposes in this study, it is only important that the dominant terms be 

' correct. 

5.  Discussion 

5.1. Theoretical View 

5.1.1. Single Class 
On sequential architectures, exact solution of a single class queueing net- 

work model requires about 4NK operations. Assuming an unlimited number of 
processing elements, and an unlimited fan-in and fan-out at  each one, the data 
flow architecture allows the solution time to be reduced to 0 ( N )  by Mean Value 
Analysis, 0 (K + N )  by Normalization Constant Recursion, and to  0 ( I )  by Nor- 
malization Constant Direct computation. With MVA, all devices can be treated 
in parallel, whereas with NCR there is a double recursion, leading to the K term 
in the computational complexity. The constant time of NCD comes only with 
fan-in and fan-out degrees greater than L , which is totally unrealistic for all net- 
works of interest. 

With the more realistic assumption that fan-in and fan-out at each opera- 
tion is restricted to two, the relative costs of the three methods are quite dif- 
ferent. The NCR approach is unaffected since the recursive calculation of the 
normalization constant is naturally done with operations having only two inputs 
and two destinations for the output. With MVA, on the other hand, the sum- 
mation of residence times over all devices adds a time factor of log,(K) at each 
population level. On conventional architectures, MVA and NCR are usually 
thought to have the same orders of computational cost, so the difference between 
NCR (0 ( N + K ) )  and MVA (0 ( N l o g , K ) )  in the case. of data flow architectures 
with limited fan-in and fan-out is interesting. For NCD, the products over K 
devices require log& time steps, and the summation over all feasible states 
requires log,L time steps. Since the log,L term (which is essentially log , (N!)  ) 
grows much faster than N ,  the NCD method is not of interest for any models of 
realistic size (i.e., JV 24 and K 24). 

For suflciently large models, the parallelism in all three solution approaches 
will become so high that all available processing elements might be kept busy 
continually for most of the computation. In this case, with a good compiler for 
the data flow language, the computation rate could come close to  the product of 
the number of processing elements times the computation rate of each one. 

5.1.2. Multiple Class Models 
The multiple class results are almost direct generalizations of the single 

class results. In the "ideal" case, however, the NCR algorithm can exploit high 
degrees of fan-in to do all computations corresponding to a particular center in 
parallel, making it appear much superior to MVA. With fan-in degree restricted 
to two, NCR remains better than MVA (assuming that EN, exceeds K )  by 

C 



- 6 -  

operat ions 

space 

operators 

ideal 

2-way fan 

256 PE’s 

avoiding the recursion over customer population levels. The NCD approach 
remains acceptable (and even preferable!) for slightly larger models than in the 
single class case. This is true because the more classes there are, the longer L 
stays small relative to n(Nc + I ) .  For all three approaches, very high potential 

MVA NCR 

C 

parallelism is feasible already for quite small models, so again the number of pro- 
cessing elements will be the limitation on computation rate in most cases of 
interest (assuming that the compiler is very effective in balancing the computa- 

NCD 

- 

tional load across all processing elements). 

if E N c  >8 >256 

4CK n ( N c + l )  
c 

CK r j [ ( N c  c + I )  I K L  + K z l o g , N c  
C 

MVA 

6 C K n ( N c  +1) 
c 

256 

~ 

NCR 

2 K  

NCD 

K [  LC + ? N e ]  

2 

maxNc c +log,( CKL ] 

K L C + C N c  [ 
256 

if L >256 

Table 2. Approximate Computational Cost in the Multiple Class Case. 
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5.2. Practical View 
In this section, we consider what kinds of queueing network models could 

conceivably be solved on data flow machines even though they are infeasible on 
conventional machines. We will consider conventional solutions to be acceptable 
if they require fewer than 10' operations (since that many operations can be exe- 
cuted sequentially in well under 10 seconds on current machines). We will con- 
sider conventional solutions to be infeasible if they require more than about 
operations (since this would require several hours of sequential computation on 
almost all current machines). 

5.2.1. Exact Solutions 
Because most single class models have parameters that satisfy 

4NK < 10' , 

the use of data flow architecture would not significantly expand the class of use- 
ful single class queueing network models. 

In the case of multiple class models, we must consider two cases dis- 
tinguished by whether or not the model is sufficiently large that essentially all 
available processing elements will be busy or not. Examining the thresholds 
shown in Table 1 for when all processing elements become busy, it is apparent 
that whenever 

all three of the dataflow approaches will lead to sufficient parallelism to keep as 
many as 256 processing elements busy essentially all of the time. Consequently, 
the computation time of a solution will be at least as great as the number of 
required operations divided by the product of the number of processing elements 
and the operation execution rate of each one. When the inequality above is not 
satisfied, the conventional solution is acceptable, and a data flow architecture 
does not increase the class of queueing networks that are feasible for solution. 

A high degree of parallelism (say with 256 processing elements) along with 
very fast processors means that, for very large queueing network models, data 
flow architectures might make it feasible to solve networks requiring as much as 
10oO times as many operations as are required for the solution of the largest net- 
works solvable on conventional machines. Let us consider what this factor of 
1000 means in terms of the variety of networks that can be solved. 

The total number of operations depends on three parameters: the number of 
devices, the number of classes and the number of customers per class. Because 
the number of devices ( K )  is a multiplicative factor in the computational cost 
(see equation ( S ) ) ,  with 1000 times more operations, models with 10o0 times 
more devices can be solved. However, models with many hundreds of devices are 
solved with conventional architectures, and limitations on number of devices 
generally come more from space restrictions than from time restrictions. 

The factor by which the number of customers per class can be increased 
(assuming that each class has it5 population increased by the same factor) 
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clearly depends on the number of classes in the model. In general, the factor is 
( I O O O ) ' / ~ .  For single class models, this means that the population can be 
increased by a factor of 1000, while for a two-class model, the factor drops to 
about 32. For models of five and ten classes, the respective factors are 4 and 2. 
Thus, substantial gains in population size per class are possible only when the 
model has very few classes. 

Finally, we consider the possible increase in the number of classes. We will 
assume that all classes have the same populations, so that the computational 
cost expression specializes to: 

4CK [(Ne +l)c] 

Since the class population is raised to the power of the number of classes, the 
number of additional classes that can be added when increasing the amount of 
computation 1000-fold is very sensitive to the class population. If the class 
population is extremely small (say 1 or 2),  then the number of classes added can 
be as high as seven to ten. With populations around 3 or 4, the number is four 
to six additional classes. When the class population is 10, only about two or 
three classes can be added, and when the class population exceeds 25, then at 
most one or two classes can be added to the model without expanding its compu- 
tational requirement by more than a factor of 1000. 

In summary, the use of data flow architecture machines would make it pos- 
sible to solve somewhat larger models than can be solved practically on conven- 
tional machines, but the combinatorial nature of the computational cost expres- 
sion means that a 1000-fold gain in computational power permits only much 
smaller changes in the number of classes in the model or the number of custo- 
mers per class. Thus, from a practical point of view, it is not clear that the use 
of data flow architectures for solving queueing network models would have a sig- 
nificant impact on the class of queueing networks found to be useful. 

5.2.2. Approximate Solutions 
Throughout this paper, we have concentrated on the "exact" solution of 

queueing network models. However, for very large networks, the extraordinarily 
large number of computational steps may mean that a significant numerical 
error in the results will be a danger, so that the results can no longer be con- 
sidered "exact". It is often the case that close "approximate" solutions to the 
queueing network model are acceptable since model input parameters are seldom 
known precisely. 

One technique that has proven useful in reducing the computational require- 
ments for analyzing very large models is "hierarchical modelling." Particularly if 
there is some symmetry in the large system, it may be possible to solve subsys- 
tems in isolation with low level models, and then to solve the interactions among 
the subsystems in a higher level model. Such an approach can greatly reduce the 
total number of computational steps required to solve the model. 

Alternatively, the use of one of the approximate solution algorithms derived 
from mean value analysis [S79, CN82] may be more appropriate for treating very 
large models than use of the exact algorithms such as MVA or NCR. The 
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approximate MVA algorithms have computational costs that are independent of 
the class populations (such as 0 ( K C )  or 0 ( K C S ) ) .  Consequently, in all practical 
cases, their application requires a number of operations that is small relative to 
io', and they can be executed acceptably on conventional machine architectures. 

6. Conclusions 
For several reasons, it does not seem likely that the availability of highly 

parallel machines for queueing network analysis will significantly change the type 
or size of queueing networks used to model computer system and communication 
network performance. First, queueing network analysis algorithms can handle 
extremely large single class models quickly on sequential machines. Even with 
multiple class models, a thousand-fold parallel machine would only allow the 
solution of models with a few more classes and/or a few more customers per 
class than in models that are currently solved on sequential machines. 

Second, because the goals of modelling include simplicity, understandability, 
and conciseness (with respect to the number of parameters), it may be the case 
that the sizes of models found useful will not increase even though the systems 
being modelled will be larger and parallel machines would be able to solve the 
larger models effectively. 

Third, because it is seldom necessary to determine the exact solution of 
large models (due to  uncertainties already present in the parameter values 
among other things), large queueing network models can often be solved either 
by a hierarchical modelling approach or by using an approximate solution tech- 
nique derived from mean value analysis. Either of these approaches radically 
reduces the amount of computation required to solve large queueing network 
models. 

An observation of interest in this study is the fact that parallel architec- 
tures lead to a better gain in performance for convolution based algorithms 
(YCR) than for those based on mean value analysis (MVA). In their sequential 
forms, convolution and mean value analysis algorithms are generally considered 
to have essentially equivalent computational cost. 

Perhaps the most significant lesson to  be learned from our study is the fact 
that starting from an algorithm statement with maximal apparent parallelism 
(Le., minimal data dependency) does not always lead to the best implementation 
of the algorithm for a parallel machine. In our study, the NCD algorithm had 
the least data dependency. However, with the realistic assumption that fan-in 
and fan-out at each data flow component is limited to some small number, the 
large number of factors in each term and the vast number of terms to be 
summed cause the NCD approach to be much less desirable than either the NCR 
or MVA approach except for extremely small models. With limited fan-in and 
fan-out, the number of component stages required to distribute parameter values 
to where they are needed in the NCD scheme, and the number of stages required 
to sum over all terms become intolerably large when large models are analyzed. 
The NCR and MVA schemes use recursion (each in a different way) to avoid the 
need for distributing parameter values widely and calculating the sum of a very 
large numbers of terms. Thus, the computation path length of the data flow 

- 
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machine is much shorter for NCR and MVA than for NCD. 
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